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PRINCIPAL NOTATION

Van Driest damping length parameter
local skin-friction coefficient
dimensionless stream function

u/ué
variable grid paramefer

modified mixing length, or reference length

pressure

dimensionless pressure-gradient parameter

Reynolds number, uex/v or u.L/v

Reynolds number, uee/v

velocity components in the x- and y-directions, respectively
reference velocity

friction velocity (r /p)

Cartesian coordinates

parameter in the outer eddy-viscosity formula, see (2.8)
boundary-tayer thickness

displacement thickness, see (2.5)

eddy viscosity

dimensionless eddy viscosity

transformed y-coordinate

transformed boundary-layer thickness

o>

momentum thickness, Jf u/ue(1 —-u/ue)dy
0
intermittency

Von Karman's constant
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u dynamic viscosity

v kinematic viscosity
0 density |
T shear stress

P stream function

Subscripts

e outer edge of boundary layer

W wall

w freestream conditions

0! differentiation with respect to n

vi



1. INTRODUCTION

Boundary-layer calculations are usually performed for prescribed
boundary conditions which, for two-dimensional incompressible flows, may
be provided in the form

u(x,0) = 0, v(x,0) = v (x),  u(x,8) = uy(x) (1.1)

In some problems, however, the external velocity distribution is unknown and
can be determined in order to satisfy an alternative boundary condition, such
as prescribed displacement thickness, &*(x), or the wall shear, Tw(X).
These solutions are obtained with "inverse boundary-layer methods" and find
application in many practical problems. For example, the airfoils discussed
in a recent article by Liebeck (1976) are designed on the principle that,

in certain regions of an airfoil flow, the deceleration results in values of
wall shear stress close to zero. Other important applications of inverse
boundary-layer procedures occur in the calculation of duct flows such as those
discussed by Cebeci and Bradshaw (1977).

A particularly important application of inverse boundary-layer procedures
is their potential to calculate the properties of separating and reattaching
boundary-layer flows. It is well known that, for a prescribed external
velocity distribution, the boundary-layer equations are singular at separa-
tion: they are not singular, however, when the disptacement thickness is
prescribed. This was demonstrated by Catherall and Mangler (1966) who solved
the laminar boundary-Tayer equations in the usual way until separation was
approached and then, by assuming a displacement-thickness distribution, cal-
culated the external-velocity distribution and local flow properties through
the recirculation region.

More recent investigations of the inverse boundary-layer method have been
reported, for example, by Klineberg and Steger (1974), Horton (1974), Carter

(1974,1975), Carter and Wornom (1975) and Williams (1975,1976), and have involved

solutions to the laminar boundary-layer equations with prescribed displacement-
thickness and shear-stress distributions in regions of negative shear stress.

The present report is concerned with incompressible turbulent boundary-
layer flows with and without separation. It represents a major extension to



the work described by Cebeci (1975a), which was concerned with compressible,
attached boundary-layer flows, and makes use of Keller's (1970) two-point
finite-difference method to solve boundary-layer equations appropriate to
turbulent flow. The nonlinear sigenvalue approach of the earlier work was
found to be inappropriate to the separating boundary layers which are the
main concern of this report and an alternative-approach, based on the solu-
tion procedures of Cebeci and Keller (1972), has been used. The solutions,
which relate to attached and separating flows, were obtained with prescribed
distributions of displacement thickness.

The equations and boundary conditions are presented in the following section
together with the algebraic eddy-viscosity formulation. The succeeding sections
describe the solution method, referred to as the Mechul*-function method, and
these results and their implications. A brief statement of the more important
conclusions forms the final section.

*11t. unknown (Turk.)



2. BASIC EQUATIONS

2.1 Boundary-Layer Equations

The conservation equations appropriate for steady two-dimensional
incompressible laminar and turbulent boundary layers may be written as

follows:
Continuity:
U, 9V _
ox "oy - 0 (2.1)
Momentum:
u u__1dp, 157
U v v EYY p dx * o 3y (2.2)
T =y g%——-pu'v' (2.3)

Corresponding boundary conditions, for zero mass transfer, are:

y=0 u, v=20 (2.4)
y o u > ug(x)

With specified distributions p(x) or ue(x), the equations and boundary
conditions represent the usual statement of the two-dimensional boundary-layer
problem for laminar and turbulent flows. For convenience, we shall call it
the standard problem.

The inverse problem, which we consider here, is a flow with specified
displacement thickness, &*(x), distribution. Here &*(x) is defined by

§*(x) = g? (1 —-%;)dy (2.5)

2.2 Turbulence Model

The solution of the equations in section 2.1 requires a closure assump-
tion for the Reynolds shear stress, -pu'v'. In our study we use the eddy-
viscosity concept
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-putV = pe 3y (2.6)

and prescribe €. in the manner recommended by Cebeci and Smith (1974) and
shown by them to represent various boundary-Tayer conditions such as those at
high- and low-Reynolds numbers, transition flows, etc. According to this
formulation, the turbulent boundary layer is regarded as a composite layer
consisting of inner and outer regions with different eddy-viscosity formulas
for each region. In the inner region the eddy viscosity is defined by

_,2 3u
(Em)i =t 3y Ttr

Here

L = 0.4y[1 — exp(-y/A)]

du
o v =] o #\1/2 + _ Ve %
A =26 Y. , N=(1-11.8p") R p u3 I (2.7)
) T
. \1/2 X
(W =1 — Gy — ax
v, —< p) ’ Yep = 1 —€Xxp G(x xtr)j Ug
tr
G = 8.35 x 10“4(u2/v2) R;1'34
tr
In the outer region the eddy viscosity is given by
(em)o = q f(ue — u)dy Yip (2.8)
0
where
o = 0.0168[1.55/(1 + m)]
- 1/2 '
= 0.55[1 — exp(-0.2432;"“ — 0.2982,)] (2.9)

zy = Re/425 =1



2.3 Formulation of the Inverse Problems

In our approach to inverse boundary-layer problems, we use the stream
function concept and write the continuity and momentum equations as a third-
order system in dimensionless quantities defined by

— — _ _ _ u.L
YRR, X=$ s Py s L Ve RO R T
puy 0 0
(2.10)
Then it can be shown that (2.1) and (2.2) can be written as
(bp") —dR = yr BTy B0 (2.11)

dx ax X

Here primes denote differentiation with respect to y'land b 1is given by:

b=1+c¢ s en = em/\) (2.12)

The boundary conditions (2.5) become

y=0 vE=y' =0 | (2.13a)

Y = Yo Ve s v = gy, — ROTE(X)] (2.13b)
where the subscript e denotes the boundary-layer edge and

- §*(x) — _ Y '
* = = e
§*(x) 1 Ug uo (2.14)
The relation between ﬁé and p 1is given by Euler's equation which, in terms
of dimensionless quantities, can be written as

dug

+u, — =0 (2.15)
& dx

£ 15

Two approaches to the solution of the system (2.11), (2.13) and (2.15)
were attempted. In the first approach, which we call the "nonlinear eigen-
value method," the pressure was treated, as an eigenvalue parameter. The
second approach regarded the pressure as an unknown function; we shall refer
to this method as the "Mechul-function method." The nonlinear eigenvalue
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method is described in detail in Cebeci (1975a)and only a brief description
is presented here. The Mechul-function method, which proved to be more
appropriate to flows with separation, is described in detail in section 3.

For flows with negative wall shear, it is necessary to make approxi-
mations to the governing equations to continue the calculations past the
separation point. Here we use the approximation first suggested by
Reyhner and Flugge-Lotz (1968). This approximation referred to as FLARE
by Williams (1975), neglects the wu(au/sx) term in the region of negative
u-velocity. A1l inverse boundary-layer procedures, including the ones des-
cribed here, use this approximation for regions of separated flow. Once a
solution has been obtained with this approximation, however, the assumption
can be relaxed to allow solutions of the complete boundary-layer equations.
This relaxation of the assumption is effected with a forward and backward
difference procedure, as described in section 3.3.

2.3.1 Nonlinear Eigenvalue Method

Let us assume that at x = X, We are given the initial velocity profiles
and we seek a solution of the system (2.11) subject to (2.13). In the nonlinear
eigenvalue method, Gé is assumed and with (2.15) we then obtain a solution of
(2.11) subject to (2.13a) and to the first relation in (2.13b), namely ' = Ué
at y = y,. Solutions were obtained by Cebeci (1975a)for compressible flows,
in which the governing equations were solved in transformed variables rather
than the physical variables considered here. For the solution we can compute
&% (which we shall denote by 5:) from (2.5) which, in terms of stream

function and dimensionless quantities, can be written as

'| _—
8.(x) = — (y, — v,/u,) (2.76)
Cc /-RI e e’ e
Recalling that the desired value for the displacement thickness is &§*(x), we

form:
o[ (x)] = 5% — 5 (2.17)

and seek u

o Such that ¢[U;(x)] = 0.



To solve ¢[Eé(x)]= 0, we use Newton's method. With an estimate Géo)(x)

of the external velocity we define the sequence Uév)(x) by setting

[ \Y
~ ¢Lug(x)] (2.18)

a‘é\)‘ﬂ)(x) = ‘d‘(\)) —
solud(x)] /20,

e

The derivative of ¢ with respect to Eé can be obtained from (2.17) by

making use of the relation given by (2.16). This gives

% ¢[u\e)(x)] = = ] -_— + — (2.]9)

TR Ug /ﬁ[ au u

One step of the iteration may be summarized as follows: uéo)(x) is assumed
and a solution of the standard problem obtained. From this result and from
the desired value of §*(x), ¢ 1is found from (2.17). The next value of

u, can then be calculated from (2.18) provided that a¢/aﬁé is known. That
is, obtained by solving a set of variational equations as described in Cebeci

(1976). The iteration process is repeated until
" x) — 70| <o (2.20)

where 81 is a small error tolerance.
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3. MECHUL FUNCTION METHOD

3.1 Numerical Formulation

In the Mechul function method, we solve the system (2.11), (2.13) with
the numerical method of Keller (1970). This is an efficient accurate two-
point finite-difference method that has been used extensively by Cebeci for
two- and three-dimensional flows (see, for example, Cebeci (1974, 1975b)).
According to this method we introduce new dependent variables u(X,y), v(X,y)
so that (2.11) can be written as a first-order system. With the function p
treated as unknown and with the help of the y-momentum equation (-9p/8y = 0)
we can write (2.11) as '

' = u (3.1a)

u' = v (3.1b)

p' =0 (3.7¢)

v _ 9P _ ,8u_, 3y
(bv) ax = Uax — Vg (3.1d)
Similarly (2.13) becomes

y =20 Yy =u=20 (3.2a)

Y5 ¥es U= Uy g = Uy, — VR E*(x)] (3.2b)

Here, for convenience, we have dropped the bars on x, y, p and Uge

On the rectangular net shown in figure 1, we denote the node points by

"

X

o= Xtk n=1,2, ..., N (3.3)

Xy = 0, X

i

‘yO 0, ‘yj=‘yj-1+hj j=1,2, ..., 0 : .VJ=.ye

Nonuniform net spacings kn and hj are used. The quantities (¢, u, v, p)

at points (xn, yj) of the net are approximated by net functions denoted by
(wg, ug, vg, pg). We also employ the notation for points and quantities midway
between net points and for any net function qg:



)
P Py
.YJ' :
l
Yi-1/2 R A S
|
Y ]
Jj-1
Py { P,
— X
-1 *n-172 *n

Figure 1. Net rectangle for difference approximations.

s 1
X2 27 (¥ %) s nj-172 =7 (nj + nj_q)
(3.4)
n-1/2 _1 /. n n-1 n _ 1, n
9 =z (95 +q5 ) ’ .qy2 =7 (a5 * Q3.1

The finite-difference forms of equations (3.1a,b,c), written for the midpoint
(xn,yj_1/2) of the segment P]P2 shown in figure 1, are

n n
¥i Y1 . on

h. = UJ_]/Z (3.5a)
J

n n

UJ - uj"] _ n

n n

Ps — Ps_

...\.J._.h___J_l: 0 (3.5C)
J

Similarly (3.1d) is approximated by centering about the midpoint (xn_]/z,
yj_]/z) of the rectangle P,P,PJP, to obtain

sy — p7 V!

J'J J-1"3-1 n n-1 n 2\n n-1 n
> o L)y y2 * vitiaviarse = (W51 2 = ¥50/2Y5-1/2)
n n-1 _ pn-1

(Vo]

o=

i

=
wha
oF
r

b
-
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e



Here

(bv)"™ T — (bv)""]
n-1. _ J ~1 -1
Riy/2 = = i 14 L] = (WD), (3.6a)
1
S vana 3.6b
N Xy = X ( )

Similarly the boundary conditions (3.2) and the relation (2.15) become

o =0s ug =0, uj=ul, )= ully, - 5*(x)] (3.7)
n (ug)n n-1 (ué)n-1
P + ___2_.__= P + ——‘—2——- (3'8)

3.2 Solution of the Difference Equations

If we assume (wg ], ug 1, v? ], pg']) to be known for 0 < j < J,

then (3.5) for 1 < j < J-T and the boundary conditions (3.7) yield a non-
Tinear a1gebraic system of 4J+4 equations with the same number of unknowns

(wJ, ul R vn To solve the system we use Newton's method. We introduce
1terates [w Vg . , v§ ), P§”)] v=0,1,2, ..., with initial values
(0) _ (0) _ (0) _ .n-1 (0) _ ,n-1 .
Yy T 0, u, = 0, Vo~ T Vo P0 = Po j=0

(0) _ n-1 (0) _ ,n-1 (0) _
Yi T T vy e Y 4 = Y j i

wSO) = wg 1 uéo) = ug'], VSO) = vg'], PSO) = pn-1
For the higher-order iterates we set

R O B O LN OB S I (L IO E

J J J J ] J J
(vi1) _ p(v) (v)
Pj = Pj + apjv (3.10)

Then we insert these expressions in p]ace of [w 2 Uss vg, Pj% in (3.5) and
drop the terms that are quadratic in [Gw u§ ), 6v§v , GPjv)]. This procedure
y1e1ds the following Tinear system:

10



h
J =
5¢j _.5¢j_] 7= (6UJ + GUJ ) (P])j
h.
Jj =
suj —ousy — 7= (ovy + 6v5 ) = (r3)yy (3.11y
8P = 6P5q = ()

(S])jsvj + (Sz)jSVj_] + (53)j5¢j + (54)j6¢j_] (55) GUJ '(Ss)jéu

+ (56)j5uj'] + (S7)j6pj + (57)j6Pj_] = (rz)j

for j=1,2, ..., J. Here for convenience we have dropped the superscripts
v and n, and have reordered the equations so that the Ao matrix is not
singular. (For details, see Cebeci and Bradshaw, 1977.) The coefficients
(rk)j (k=1 to 4) are:

(ry)y = hj“j-1/2 RS
(rg)joq = hyViorza = Y5 * U5
(3.12)
(r4)j-1 =0
bv). — (bv),
_ ph=1 ( J J=1 n-1 .
(ro)y = Rsoiye = 1> tag L)y + Vi1 295172
2
| — (u )3-1/2 ¥y 1/2V3 1/2] — 20, (P5_1/p = P5_ )
The coefficients (Sk)j (k = to 7) of the differenced momentum equation
are:
bJ
(S])j = ﬁ" ‘?‘(¢ J ]/2)
“n n-1
(Sz)j = _bj-1/hj + —7'(¢j_] wJ ]/2)
_%n n-1
(53)j = —?-(vj + Vj—]/z) (3.13)

n-1
(s9)5 = =2 (vj1 * viap2)

(55)j = -o U

n-J
(s6)5 = —onUjoy
(57)j = -oy

11
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The boundary conditions (3.7) become

89, = (r])O =0 su_ = (rz)O =0 (3.14)

o0y — Dyg = R s () Jeuy = (r3);  =uy + uylyy — /R &%)
WH™! = (8" (3.14)
J

u
- _ J n-1 n
ujduy + 6PJ = (r4)J = 5 + PJ —-PJ

We use the block elimination method discussed by Isaacson and Keller (1966)
to solve the Tinear system. According to this method, the linear system is
written in the form

Ao =R (3.15)
Here
- - F—' b
Ao Co $o
81\\\f1::\31::?\\\\ 8
A = Bj {C* » f\,,J = '?Jj s
By_1 A1 Caoq $3-1
_ Bs A | &
B B (3.16)
(K)o
({Y\:)] _—
: 3
R SuU.
- . _1°75
5\] (rC)J v V.
j
SP.
. PJ
(r)go I
(r)y

12



The matrices A., B;, C; are 4 x 4 matrices which are given by

J J J
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 .
Po= 10 -1 -ny2 0 % o 1 -ns2 0 0<J<d
0 0 0 1 0 0 o0 1
(3.17)
1 -hy/2 00 1 -hi2 0 0
(sg); (sg)s (s5): (s9); (sq) (s )i (s7)s (s4);
- |99 BRSBTS g | TS B B
0 0 0 o0 0 -1 -hy2 0
0 0 0 0 0 0o 0 -1
o .J L. -

3.3 FLARE Approximation and DUIT Procedures

As previously mentioned, flows with negative wall shear require the use
of the FLARE approximation in the region of reversed flow. According to this
approximation, ug and ug -1 |
Once a solution is obtained with this approximation, more accurate calculations
can be obtained without the FLARE approximation by using a forward and back-
ward difference scheme. In the region of reverse flow (uJ < 0) we write the
difference approximations of (3.1d) for the midpoint (xn+1/2, ju ]/2) of the

rectangle P1P2P P4 (see figure 2) to get

are-set-equal to zero in the region of negative uy-

(bV)g —~(bv)g_

P — L)1/ * Vi1 a81se = gy = ¥5H ¥ 02
=~ 28lP] = PDg 1 = REE © (3.18)
Here
+1 +1
Rgt}/z _ _;(bv)g hj(bv)g 1, B[(wV) ]/2 . )n+1/2]
o xn+1]_'xn
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4 '

Py P p
VJ- l
Yj_'l/z ‘é’ —H— — — e ——
y_ | ,
o P3 | P2 &

I | -— X
Xn-1 =172 *n n+172  *n#l

Figure 2. Net rectangle for difference approximations for the DUIT procedure.

With this procedure, the calculations are repeated, starting at the x-station
where the calculations first indicated reverse flow and are continued to the
final x-station, until the solutions do not indicate any changes. This pro-
cedure, referred to as DUIT (downstream upstream iteration) by Williams (1975),
usually gives converged solutions with two or three DUITs.

3.4 Comments on thé Solution Algorithm

The solution of the governing equations given by (2.1) to (2.4) or (2.11)
and (2.13), requires initial conditions which can be obtained in the trans-

formed variables,

n = /ue7vx Y oo b= Yugux f(x,n) (3.20)

Equations (2.1) to (2.4) become:

(bf') + Bt Leen 4 mf1 — (£)2] = x £ g-rZ @

2
where primes indicate differentiation with respect to n and
du
= X e
m= u—e-d—x— (3.22)

Equation (3.21) is subject to the following boundary conditions:

14



n=20 f=f =0 n - f f' > 1 (3.23)

©

Initial conditions were obtained by solving the governing equations for the
standard problem to a location upstream of separation.

The present method has been developed to allow nonuniform net spacings in
the streamwise direction and across the boundary layer. In the latter case, a
geometric progression has been used with the property that the ratio of lengths
of'any two adjacent intervals is a constant; that is, h, = Khj_1. The dis-

J
tance to the j-th line is given by the following formula:

ny = h(kd = 1)/(K=1) K> ' (3.24)

There are two parameters: h1, the length of the first An step, and K,
the ratio of two successive steps. The total number of points J can be
calculated from the expression,

0T+ (K= 1) (ny/hy)]

J = Tn K (3.25)

For further details, see Cebeci and Bradshaw (1977).

15



4. RESULTS

To test the Mechul function method calculations were performed for
1am1nar and turbulent boundary layers with and without separation, and
compared with the results of previous numerical solutions for laminar flows
and with experimental data for turbulent flows. The latter comparisons were
made for a number of attached flows and only for one separated flow.

4.1 Results for Laminar Flows with Separation

For Taminar flows with separation we have considered four separate flows
which allow the displacement thickness distribution to be specified. These
include the laminar separated flows of Williams (1976), Carter (1975) and
Briley (1971). 1In the last case, the free-stream boundary condition corres-
ponded to a linearly decreasing external velocity distribution followed by a
constant velocity and resulted in separation and reattachment. Figure 3 allows
a comparison of values of local skin-friction coefficient Ce /ﬁ[ calculated
with the present method with those obtained by Briley from the steady, two-
dimensional form of the Navier-Stokes equations. Here Ce is defined by

_ TW _ lell(O)
Ce = = (4.1)
LI puoz R

and cf/ﬁf‘ represents 2¢"(0). These calculations were made for the displace-
ment thickness distribution (see in figure 3) deduced from the Navier-Stokes
solutions. In general, the agreement is very good and the small discrepancy
may be associated with the difficulty of reading the input &*(x) distribution
from the graph presented by Briley. The Navier-Stokes solutions were |
obtained for RL = 2.08 x 104 and required 45 minutes on a UNIVAC 1108. The
results obtained by the Mechul function approach required approximately

10 seconds on a CDC-6600 computer.

We next consider the two laminar flows with separation and reattachment
computed by Carter (1975). These flows have displacement-thickness distribu-
tions &*(x) given by

16



(S*
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Cf%ﬁ[
0.2 L PRESENT METHOD

+ BRILEY (1971)

0.1
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-0.1 L

Figure 3. Calculated local skin-friction coefficient distribution for
separating and reattaching flow computed by Briley (1971).

1.7208vx 1.0 < x =
s*(x) = { ap + ay(x —xq) + aj(x —-x])2 + a,(x —-x])3 X] S X S X%

3y + aglx = %)% + T(x — x,)3
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with

a; = 1.7208 /?T

a, = (0.5)(1.7208)//§{

az = (O.S/A])[G/A] (amax —-a]) —-4a2]

_ 3

- _ s : (4.3)

21 = Spax

- 2 .

a3 = —']/A2[3(6$ax _'63) t 0,83 ]

- 3

ay = 1785 [2(e5,, — 85) + 2,6%"]

A'I = X2 - X'I, A2 = X3 —Xz, X'l = ].065, X2 = ].35, X3 = ].884

The first flow, referred to as Case A, has 6x.y = 5.6, and the second flow
referred to as Case B, has Gﬁax = 8.6. The two displacement thickness

distributions are shown in Figures 5 and 6.

Comparison of present results with those of Carter (1975) is shown in
Figures 4, 5, and 6. The present calculations were started at x = 0 by
solving the governing equations in transformed variables for the standard
problem and then at x =1 the Mechul-function method was used to solve the
inverse problem with the equations expressed in physical variables and with
the FLARE approximations. The procedure of improving the FLARE results by
the DUIT procedure is currently under examination.

As can be seen, the present results agree well with those of Carter
which made use of the FLARE approximations and the DUIT procedure. Our
skin-friction results are in better agreement with Carter's results obtained
by the FLARE procedure.'His FLARE approximation was slightly different from
that considered here and may account for the disagreement with the present
results. The computer time associated with the results was again of the
order of 10s on a CDC 6600. At almost all x-stations the convergence rate
was quadratic and required only two or three iterations, including regions
of separated flow.
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Figure 7 shows the results for another laminar flow, with prescribed
displacement thickness distribution, previously computed by Williams (1976).
The ¢&*-distribution is given by

6% = 0.6479{1 + 9 exp [-0.0625(x — 14)%]} . (4.4)

In this case the flow starts at the stagnation-point and separates at approx-
imately x = 10. Both calculations were made by the FLARE approximation. As
in the previous cases, the solutions converged quadratically requiring only
two or three iterations, including regions of separated flow.

4.2 Results for Turbulent Flows

Two separate turbulent flows have been considered. These flows did not
have flow separation and were computed with the eigenvalue and the Mechul-
function methods to check the predictions of both methods for attaching flows.
The two sets of results were identical. The application of the method for
turbulent flows with separation is currently under examination.

The two attached turbulent flows were those measured by Schubauer and
Spangenberg (see Coles and Hirst, 1969) and labeled as 4400 and 4800 at the
1968 Stanford Conference. Flow 4400 has a strong adverse pressure gradient
and flow 4800 has a mild adverse pressure gradient. Figures 8 and 9 present
the results for these two flows. The calculations were made first by using
the standard procedure: 1in this case the external velocity distribution was
specified and the boundary-layer parameters were computed. Next, the calcula-
tions were made with both of the inverse procedures: the measured displacement
thickness distribution was specified and the external velocity distribution
computed along with other boundary-layer parameters. As the results show,
the agreement with experiment is very good; the difference between calculated
and experimental velocity distributions is small, and the boundary-layer
parameters computed by standard and inverse procedures agree with each other.
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Figure 7. (b) External velocity distribution.
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Figure 7.

(c) Velocity profiles near and in the reverse flow region.
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Figure 8. Results for flow 4400. (Inverse results were obtained by using
both the nonlinear eigenvalue method and the Mechul-function
method and they are identical.)
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Figure 9.
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Results for flow 4800. (Inverse results were obtained by using
both the nonlinear eigenvalue method and the Mechul-function
method and they are identical.
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5. CONCLUDING REMARKS

A numerical method for computing two-dimensional incompressible laminar
and turbulent boundary layers for separated flows is presented. The Reynolds
shear stress term is modeled by using the algebraic eddy-viscosity formulas
developed by the author. Two separate approaches for solving the governing
equations are investigated. The first approach, which we call the "nonlinear
eigenvalue method" treats the pressure as an eigenvalue parameter and works
with either physical or transformed variables. The second approach treats
the pressure as an unknown function and seeks the solution of the governing
equations in physical variables. This approach, which we call the "Mechul
function scheme" works very well for both attached and separated flows while
the first approach only works for attached flows.

Comparisons and calculated results for both laminar and turbulent flows
show the Mechul function method provides a very useful tool for computing the
separated flows with the FLARE approximation. The computed results agree well
with the available numerical and experimental results and show no signs of
numerical problems in regions of negative wall shear.
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